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Yu Feng, Entropy Xu, Yu Tang
Duke University

ABSTRACT

As time evolves, many facts will evolve along with it, such as ‘the U.S. Pres-
ident’, ‘Home Team of Lebron James’, etc. Understanding the scope and in-
terval of knowledge is an essential task for more generalized machine reading
comprehension. However almost none existing MRC method particularly takes
time dimension into consideration, while existing temporal KBQA methods have
achieved strong performance in complicated temporal question answering. In-
spired by temporal KBQA models, we therefore propose a new structured tempo-
ral MRC model, S-TMRC. A subgraph retriever is designed to retrieve a temporal
question subgraph for each question from the corresponding long document, on
which a question reasoner can utilize temporal KBQA methods to reason for the
answer. Extensive experiments on the TimeQA Chen et al. (2021) benchmark have
shown that our proposed model can improve overall temporal QA performance,
efficiency and interpretability.

1 INTRODUCTION

Time is an important dimension in our physical world. Lots of facts can evolve with respect to
time. For example, the U.S. President might change every four years. In order to answer the fol-
lowing question- who was the U.S. President after WWII? We should capture the knowledge of
different presidents over time in the document, while managing to perform comparison between the
time of WWII (1939-1945) and their respective serving time to locate the right answer, Harry S.
Truman(served as U.S. President from 1945 to 1953) instead of Barack Obama (served as U.S. Pres-
ident from 2009 to 2017). Therefore, it is important to consider the time dimension and empower
the existing QA models to reason over time.

However existing models in machine reading comprehension rarely took time dimension into con-
sideration. Dhingra et al. (2021) proposed a simple modification to pretraining that facilitated the
acquisition of temporal knowledge and efficient updates to existing pretrained LMs. They focused
on coarse and shorter time range for calculating by whole year only from 2010-2020, while we are
facing a much larger time span from approximate 1800 to 2021 which will be much more compli-
cated. Some works have also been done in KBQA for temporal reasoning (Lacroix et al. (2020);
Jain et al. (2020); Mavromatis et al. (2021)). They have achieved high performance for complex
temporal question answering. However, they reasoned on the structured knowledge base while we
are facing pure textual context (i.e., passages).

To take advantage of the strong performance of the temporal KBQA models, we propose S-TMRC,
a new structured temporal machine reading comprehension model by introducing and constructing
structured knowledge. In particular, our proposed S-TMRC split the temporal question answering
process into two modules: subgraph retriever and question reasoner. We utilize the subgraph retriver
to construct a temporal subgraph for each temporal MRC question from its corresponding long
document and then apply temporal KBQA model as the question reasoner for answer prediction.

Existing MRC models can only predict the location of possible answers, which leads to poor in-
terpretability for the question answering process. The temporal question subgraph retrieved by our
subgraph retriever can serve as explicit guidance for users to understand the question answering
process. Also, to reason directly on long paragraphs is extremely time and energy consuming, our
proposed model can dramatically reduce training time and memory consumption by breaking the
reasoning process down into simple and efficient parts.
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Experimental results on the TimeQA Chen et al. (2021) benchmark, show that our temporary MRC
framework can achieve substantial and consistent improvement in terms of answering temporal ques-
tions, especially complicated temporal questions.

2 RELATED WORK

Recent advances in large pre-trained language models (Devlin et al. (2019); Liu et al. (2019)) have
been shown to encode an impressive amount of factual information (Petroni et al. (2019); Roberts
et al. (2020)). This has inspired a line of research on probing and measuring the capacity of stored
factual knowledge in LMs Poerner et al. (2019). While large LMs appear to absorb KB-like in-
formation as a preproduct of pretraining, degradation of models has been found when tested on
a different time period than their training data Huang & Paul (2018). To address the lackness of
temporal reasoning ability of pre-trained LMs, Dhingra et al. (2021) proposed a temporally-scoped
pre-trained scheme that tried to the impact of temporal shift on the knowledge encoded by existing
LMs. Réttger & Pierrehumbert (2021) proposed a temporal adaptation method, trying to capture
event-driven changes in language use in the downstream task. A parallel line of work has explored
editing interal parameters of pre-trained LMs given a collection of facts (De Cao et al. (2021); Zhu
et al. (2020)). Another line of work explore the benefits of leverage the external symbolic temporal
information: Several KBQA datasets (Saxena et al. (2021); Neelam et al. (2022)) have been con-
structed which leveraged the temporal information resides in large-scale knowledge bases such as
Freebase and Wikidata. The KBQA datasets make use of Temporal Knowledge Graphs (Temporal
KGs) which provide temporal scopes (e.g., start and end times) on each edge in the KG. The dataset
format closely resembles the traditional Knowledge Base augmented question answering task albeit
the explicit constraint of the answer being either an KB entity or a time duration.

3 APPROACH

3.1 PROBLEM DEFINITION

We aims to solve the temporal machine reading comprehension questions. A temporal question g
is a normal question with time constraint, e.g, from year]l to year2, before Monthl year3 ( refer
Firgue 1 for a detailed example). A long wikidata document D is given for answer a, prediction.

3.2 BASELINE METHOD

We introduce the base Temporal KBQA model and the baseline temporal MRC models in this sec-
tion.

KNOWLEDGE BASE QUESTION ANSWERING

Our KBQA base model TempoQR will first apply TCompelEx Lacroix et al. (2020) to obtain the en-
tity, relation, and timestamp embeddings for the constructed Temporal Knowledge Base. It exploits
TKG embeddings to ground the question to the specific entities and time scope it refers to. Then
it reasons for question answering by augmenting the question embeddings with context, entity and
time-aware information via three specialized modules. The first computes a textual representation
of a given question, the second combines it with the entity embeddings for entities involved in the
question, and the third generates question-specific time embeddings. Finally, a transformer-based
encoder learns to fuse the generated temporal information with the question representation, which
is used for answer predictions.

MACHINE READING COMPREHENSION

We adpot two baseline models for Temporal MRC Chen et al. (2021) , the BigBird and the FiD which
are known to achieve state-of-the-art performance on the Natural Question Answering Problems.

The BigBird Zaheer et al. (2020) extractive model aims to extract the start and end positions from
the given sequence. BigBird exploits sparse attention which can handle sequences of extremely



COMPSCI 590.03 Final Project Report

long length. As a consequence of the capability to handle longer context, BigBird drastically im-
proves performance on various natural language processing tasks such as question answering and
summarization.

The FiD Izacard & Grave (2020) is an generative model that aims to generate answer token by token
in an auto-regressive fashion. Being an generative models, FiD are especially good at aggregating
and combining evidence from multiple passages.

3.3 EXTENSIONS

3.3.1 MODEL

Given the aforementioned KBQA model works extremely well on temporal question answering.
We adapt MRC task to KBQA task by developing the structured temporal MRC (S-TMRC) model
in pursuit of better overall QA performance, efficiency and interpretability. In particular, the S-
TMRC model is composed of two modules. The Subgraph Retriever module targets at retrieving
the question-related temporal subgraph from the long document. The Question Reasoner module
further reasons on the subgraph to locate the target answer.

SUBGRAPH RETRIEVER

A question-related temporal subgraph G contains temporal triplets related to the given question. A
normal triplet {(e,r, ¢')le,e’ € &, € R} includes a head entity, relation and tail entity, while a
temporal triplet {(e, 7, e’ ts,tc)|e, e’ € E,7 € R ,ts,t. € T} adds extra corresponding event start
time and end time. Figure 1 demonstrated a temporal subgraph for the quetsion, “Which school did
Cho Yoon-sun go to from 1984 to 19887”. In order to obtain the accurate question subrgaph, we
need to first retrieve normal triplets from the question and its corresponding paragraph, and then
predict event time for each triplet to construct final temporal triplets.

Noted that we only construct one-hop subgraph for each question, we first use NER to identify the
top entity in the question. We infer the target relation from the question by measuring the cosine
similarity between embedding (RoBERTa) of question and relation and choose top K=1. We locate
the top-K (K=3) relevant paragraphs for the question by measuring the cosine similarity between
embedding of question and paragraph topic word. Finally, we rely on Entity Retriever and Time
Retriever to locate the potential tail entities and their corresponding event time for the top entity-
relation pair in the relevant paragraphs.

Entity Retriever. We construct two tail entity retrievers, the first one is WikiData-based where we
make full use of the WikiData and the second one is language model-based (LM-based) where we
do not rely on the WikiData.

WikiData-based: We first map the top entity to the WikiData Q ID and the relation to the WikiData
P ID. We then look for normal triplets in WikiData and link the tails with entities in the paragraphs
by the existing tool Falcon 2.0 Sakor et al. (2020).

LM-based: We modify the original temporal question into a multi-answer question by removing its
time constraint. For example, the aformentioned quetsion “Which school did Cho Yoon-sun go to
from 1984 to 19887 will be simplified into the question “Which school did Cho Yoon-sun go to ?”.

We used BERT Large as our base language model. In particular, we use the mask prediction variant
of the BERT Large Model. We start with a pre-trained question answering model from the hug-
gingface transformer library. The pre-trained model is pre-trained on the squad dataset with the
loss function of the sum of the cross entropy between the output logits and the one-hot encoding of
start/end positions as shown in Equation 1.

L = CrossEntropy(logits, start(ans)) + CrossEntropy(logits, end(ans)) (D)
Then, we start fine-tuning using our own MRC multi-answer data set. Because there are multiple

answers in a sample in our modified MRC data set, we need to rewrite the loss function of the
original model in order to support multiple answers.
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We define our fine-tuning loss function as the average of the cross-entropy loss of each correct
answers as shown in Equation 2 where A is the set containing all correct answers.

> ansc 4 CrossEntropy(logits, start(ans)) + CrossEntropy (logits, end(ans))

£ =
4]

2)

We also need to make the model being able to output multiple answers at inference time. The model
outputs logits for the start position and end position both of the length of the context text. We first
perform softmax on the both output logits and then sort them in decreasing order. Then, we get the
top k items from the list, and the original start/end positions represented by these % items are the
k answers that the model need to output. In reality, we choose k = 5 for two reasons: in our data
set most of the questions have less than 5 answers. Empirically, the answer our model produce with
ranking after £ = 5 have sub-optimal prediction result.

Time Retriever.  Our time retriever is consisted of three different layers: a pre-trained lan-
guage model as the contextualized encoder; a Graph Attention Network as the global time
propagation layer and a 2-layer Feed-forward neural network to predict the event timestamps.
We also adopt the 4-tuple representation introduced by the TAC-KBP2011 temporal slot fill-
ing task Heng et al. (2011), with each event’s temporal representation defined as the 4-tuple
(EarliestStart, LatestStart, Earliest End, Latest End). The increased granularity enabled our
model to caputure uncertainty within the language expression for a certain timepoint.From the out-
put of our LM, we can directly retrieve contextualized representation for event triggers and time
expressions. We use h., to denote the event trigger for event e; and hy, for the expression for time
t;. We take the average of event trigger/time expressions across multiple tokens to make sure all
he, and htj are of the same dimensions. We futher used Graph Attention Networks (GAT) to cap-
ture types of relations between events and aggregating informations across the temporal augmented
graph. Compared to the original GAT proposed in ,we further added relational embedding for edge
labels. Following the apporach as the original GAT Velickovi¢ et al. (2017), we stacked several
layers of GAT on top of the contextualized representations, with each layer defined as follows:

ai; = LeakyReLU(w ¢ [Why,; Whey,5 ér, ;) 3)

exp(aij) 4
> ken () exp(air) @

Q5 =

W, =ELU | Y ayWahy, )
kEN (4)

Where h! is the updated embedding after one layer and N/ (7) represents the neighbors of e;. ¢, Bt
the learnable relation embedding between e; and e;. The GAT along with the temporal augmented
graphs serve as the intermediate layer between the LM and 2-layer FFNN. After the information
propagation with the intermediate GATSs, we concatenate h., and h;; and use a 2-layer Feed-forward
Nerual Network to estimate the probability of filling ¢; as the kth element in event e;’s 4-tuple time
representation. In short:

Pijk = 0(wp ReLU(W [he,; by, ] + b) + by) (6)

QUESTION REASONER

We adopt the base TempoQR model as our question reasoner. We first apply TCompelEx to obtain
the entity, relation, and timestamp embeddings for the constructed subgraphs and then use TempoQR
to perform the temporal reasoning for answer prediction.

3.3.2 TRAINING STRATEGIES

We adopt two different training strategies: two-step supervised training to explore the optimal per-
formance of our proposal model; end-to-end training to test the performance where we do not in-
clude any additional supervision signals other than the original golden answers for the temporal
MRC.
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TwO-STEP SUPERVISED TRAINING

We train subgraph retriever and question reasoner as two completely separate modules. We first train
the component of subgraph retriever: entity retriever and time retriver. We build additional supervi-
sion signals for them by constructing the golden temporal subgraph. We infer the question-related
temporal subgraphs after training the entity retriever and time retriever, and utlize the subgraphs to
train the question reasoner.

END-TO-END TRAINING

The main idea of end-to-end training is to leverage the feedback from the question reasoner to guide
subgraph retriever, while training the question reasoner at the same time. To enable this, we optimize
the posterior p(G|q, a,) instead of the prior p(G|q), since the former one contains the additional like-
lihood p(alq, gx) which exactly reflects the feedback from the reasoner. we approximate p(G|q, a,)
by the sum of the probabilities of each potential subgraph and rewrite the posterior of each subgraph
by Bayes’ rule ?, i.e.,

n n

p(Glg,aq) = > plgrlg, aq) < Y plaglg, gx)p(gklq) @)

k=1 k=1

where p(gx|q) is the likelihood of the kth potential subgraph and p(a4|q, gx) is the likelihood of the
answer a, given the k-th potential subgraph. The whole objective function for each training instance
(¢,a,G) is formalized as:

£ = maxlog plaglg, G) + max log > " plagla, gr)p(grlg) (®)
k=1

where ¢ is the parameters of question reasoner and 6 is the parameters of subgraph retriever.

4 EXPERIMENTS

4.1 DATASETS

We use the TimeQA dataset Chen et al. (2021) to train our model. The dataset is constructed using
the following approach:

1. Time-evolving facts are first mined from WikiData which are also aligned with its
wikipedia page.

2. Crowd workers are employed to verify and calibrate the noises.

3. Question answering pairs are generated based on the annotated time-sensitive facts.

The data set is split into the training set, development set and the test set with ratio of around 14:3:3.
All the data in the data sets are categorized into “easy” mode and “hard” mode. The hard mode
samples requires the model to do temporal reasoning to find the correct answer while the easy mode
sample’s answer is available in the context. The detail of the size of each data sets and samples of
each mode are shown in Table 1.

4.2 MODEL AND TRAINING DETAILS
BASELINE

We adopt the exact same baselines: BigBird and FiD for the baseline MRC model. We test their
performance in three settings: directly finetuning on TimeQA dataset, pretraining with other datasets
( TriviaQA/ NQ) only, and pretraining with other datasets and then finetune on TimeQA. For our S-
TMRC model, we test the performance of two-step training and end-to-end training. Both WikiData-
based Entity Retriever and LM-based Entity Retriever are used for two-step training. Only LM-
based Entity Retriever are used for end-to-end training.
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Split | Mode #Questions #Entities #Relations #Answerable #Unanswerable

Train Easy 14308 3500 70 12532 1776
Hard 14681 3500 70 12532 2149
Dev Easy 3021 748 52 2674 347
Hard 3087 748 52 2674 413
Test Easy 2997 749 50 2613 384
Hard 3078 749 50 2613 465

Table 1: The statistics for different splits and modes for the Time QA dataset.

IMPLEMENTATION DETAILS

All of our models are implemented and trained using PyTorch library on one Nvidia A4000 GPU
with 16 G Memory. The LM-based model for Entity Retriever is fine tuned with AdamW optimizer
of default parameters with learning rate of 1e — 6. The Time Retriever is trained for 100 epochs with
a batch size of 256. The Quetsion Reasoner is trained for 50 epochs with a batch size of 20.

4.3 RESULTS

We compare with baseline MRC models and present the results of our proposed S-TMRC models
in Table 2. We can conclude that our proposed model does better than the baseline MRC models
when there is not any additional knowledge applied into the model. When we include additional
knowledge, we can see that the baseline MRC models finetuned on NQ/TriviaQA does better than
our optimal S-TMRC model where we use the golden temporal subgraph ( constructed by authors)
on easy mode, while our S-TMRC model performs better on hard-mode questions. This indicates
our model’s capability of complicated temporal question answering by explicitly interpreting and
reasoning on time. The two-step S-TMRC models have higher performance than end-to-end S-
TMRC model as more supervision signals are given in two-step S-TMRC models.

Model EM(Easy-Mode) EM(Hard-Mode)
Baseline MRC Models

BigBird (FT on TimeQA) 16.3 11.9

FiD (FT on TimeQA) 15.7 10.3

BigBird (FT on TriviaQA) 33.7 27.7

FiD (FT on NQ) 23.3 16.0

BigBird (FT on TriviaQA + TimeQA) 50.8 44 4

FiD (FT on NQ + TimeQA) 60.5 46.8
Two-Step S-TMRC Models

WikiData-based 41.1 42.3

LM-based 394 42.0
End-to-End S-TMRC Model

LM-based 33.6 374
Optimal S-TMRC Model 55.8 60.2
Human Worker 89.0 87.0

Table 2: Main results for different models on the TimeQA dataset, we report the EM scores for test
set under easy and hard mode.

5 ANALYSIS

5.1 QUALITY OF SUBGRAPH RETRIEVER

We first evaluate the performance of Entity Retriever, whose accuracy is crucial for effective sub-
graph construction. We evaluate on LM-based Entity Retriever. We vary the proportion of the
supervised data in 0%, 25%, 50%, 75%, 100%, and present the corresponding accuracy of tail enti-
ties in the subgraph by measuring the answer coverage rate in the modified multi-answer questions
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% Training Set used for entity retriever | 0% 25% 50% 75% 100%
At Least One Answer in a Sample is Correct | 67.48 69.65 71.68 72.36 73.85
All Answer in a Sample is Correct 852 881 1029 1030 11.09

Table 3: Results for ablation study of different proportion of supervision signals for entity retriever.

in Table 3. This table shows that increasing the size of supervised data gives us very marginal perfor-
mance boost. We estimate such small performance boost is due to the limited size of the modified
multi-answer MRC dataset, which is 5 times smaller than the original MRC training dataset. In
addition, the absolute accuracy of the model is low. The probability that the model will answer all
questions correctly in a given sample is only 11.09% at best. We believe the main cause is that the
BERT Large model for mask prediction is not originally pre-trained with multiple answers.

We further evaluate the performance of Time Retriever. Table 4 demonstrates system performance
(%) on event time extraction on dev/test set. We can find that involving document-level information
from embeddings can improve the system performance. The GAT based time propagation method
outperforms other baselines as it explicitly encodes temporal relations. Noted that the optimal pos-
sible EM score for the dataset is around 68% as the model cannot infer complicated implicit time
from the paragraph.

EM(dev) EM(test)
Baseline Extraction Model
RoBERTa 39.1 37.9
Longformer 42.6 40.4
Temporal Information based Propagation
GAT 47.6 493
Optimal | 68.1 68.5

Table 4: System performance (%) on event time extraction on dev/test set.Exact match rate of event
time is calculated.

5.2 EXPLAINABILITY OF S-TMRC

Figure 1 shows a sample case of S-TMRC’s reasoning process and its generated subgraph to assist in
explaining the answering process of the question. Given the sample question “Which school did Cho
Yoon-sun go to from 1984 to 198877, the baseline MRC model will consume the whole paragraph
as input and output the start position and end position of “seoul national university”. While for our
S-TMRC model, we will first locate the top entity ( highlighted in orange) and relation ( highlighted
in green) of the given question. We then simplify and answer the question “Which schools did Cho
Yoon-sun go to?” (highlighted in blue). Finally we predict the event time for each answer candidate
( highlighted in yellow). The explicit structured subgraph enables user to interpret the question
answering process more clearly.

5.3 EFFICIENCY OF S-TMRC

We evaluate S-TMRC of its computation times and memory consumption. The original MRC mod-
els are trained on 4 GPU with 24G memory with a per-GPU-batch-size of 1. Our proposed S-TMRC
only requires a GPU with 16G memory. Table 5 presents the summary of training times. We can
conclude that despite the multiple components in our proposed model, since we break down the
problem into small pieces, the overall training time is much less the original MRC models. The in-
ference time is longer, this is expected as S-TMRC require inference for each different component.

5.4 REMAINING CHALLENGES

The general strict accuracy for entity retriever is relatively low as existing language models cannot
support multi-answer MRC well. We think it is an interesting research direction. Also, our time
retriever cannot deal with implicit time prediction which may require common sense reasoning.
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Question: Which school did Cho Yoon-sun go to from 1984 to 1988?

&

Modified Simple Question: Which school did Cho Yoon-sun go to ?

cho yoon - sun. cho yoon - sun ( born 22 july 1965 ) is a south korean lawyer, writer and politician.
she formerly served as the south korean minister of gender equality and family and later as its
minister of culture, however she was later jailed after being convicted of abuse of power and
coercion. life and career. cho yoon - sun was born on 22 july 1965 in seoul. she attended sehwa
girls high school, graduating in 1984, and then _ where she received her
bachelors degree in international relations in 1988. she later went to columbia law school where
she received her master of laws degree in 2001. controversies..

Start Time End Time
sehwa girls high school |—>| 1965 |—>| 1984 |
—Pl columbia law school |—>| 1988 |—>| 2001 |

Figure 1: Sample case of S-TMRC model.

Training Time

Baseline Extraction Model

BigBird 180 min

FiD 150 min
S-TMRC Models

Entity Retriever 30 min

Time Retriever 15 min

Question Reasoner 50 min

Total ( with data processing) 110 min

Table 5: Training times for different models.

Currently we rely on KB pretrained embeddings for question reasoner. As a result, the model is not
new information friendly and require retrain if there is new question including new information. In
the future, we can work on a subgraph-based KBQA method which does not require pretrained KB.

6 CONCLUSION

Reading comprehension with time-evolving facts is an essential problem in the field of natural
language processing. However, conventional language models have unsatisfying reasoning per-
formance on temporal knowledge. S-TMRC, which implements a subgraph retriever followed by a
question reasoner is proposed in this paper to address the problem. Our evaluation result shows that
S-TMRC achieves an accuracy comparable to the baseline models while requires much less training
resources, takes shorter amount of time to train and has better interpretability.
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